10 research outputs found

    Generating whole body movements for dynamics anthropomorphic systems under constraints

    Get PDF
    Cette thĂšse Ă©tudie la question de la gĂ©nĂ©ration de mouvements corps-complet pour des systĂšmes anthropomorphes. Elle considĂšre le problĂšme de la modĂ©lisation et de la commande en abordant la question difficile de la gĂ©nĂ©ration de mouvements ressemblant Ă  ceux de l'homme. En premier lieu, un modĂšle dynamique du robot humanoĂŻde HRP-2 est Ă©laborĂ© Ă  partir de l'algorithme rĂ©cursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schĂ©ma de commande dynamique est ensuite dĂ©veloppĂ©, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coĂ»ts et calculant les couples de commande en satisfaisant des contraintes d'Ă©galitĂ© et d'inĂ©galitĂ©. La cascade de problĂšmes quadratiques est dĂ©finie par une pile de tĂąches associĂ©e Ă  un ordre de prioritĂ©. Nous proposons ensuite une formulation unifiĂ©e des contraintes de contacts planaires et nous montrons que la mĂ©thode proposĂ©e permet de prendre en compte plusieurs contacts non coplanaires et gĂ©nĂ©ralise la contrainte usuelle du ZMP dans le cas oĂč seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de gĂ©nĂ©ration de mouvement issus de la robotique aux outils de capture du mouvement humain en dĂ©veloppant une mĂ©thode originale de gĂ©nĂ©ration de mouvement visant Ă  imiter le mouvement humain. Cette mĂ©thode est basĂ©e sur le recalage des donnĂ©es capturĂ©es et l'Ă©dition du mouvement en utilisant le solveur hiĂ©rarchique prĂ©cĂ©demment introduit et la dĂ©finition de tĂąches et de contraintes dynamiques. Cette mĂ©thode originale permet d'ajuster un mouvement humain capturĂ© pour le reproduire fidĂšlement sur un humanoĂŻde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent Ă  ceux de l'homme, nous dĂ©veloppons un modĂšle anthropomorphe ayant un nombre de degrĂ©s de libertĂ© supĂ©rieur Ă  celui du robot humanoĂŻde HRP2. Le solveur gĂ©nĂ©rique est utilisĂ© pour simuler le mouvement sur ce nouveau modĂšle. Une sĂ©rie de tĂąches est dĂ©finie pour dĂ©crire un scĂ©nario jouĂ© par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modĂšle dynamique permet d'accroitre naturellement le rĂ©alisme du mouvement.This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements

    Dynamic whole-body motion generation under rigid contacts and other unilateral constraints

    Get PDF
    The most widely used technique for generating wholebody motions on a humanoid robot accounting for various tasks and constraints is inverse kinematics. Based on the task-function approach, this class of methods enables the coordination of robot movements to execute several tasks in parallel and account for the sensor feedback in real time, thanks to the low computation cost. To some extent, it also enables us to deal with some of the robot constraints (e.g., joint limits or visibility) and manage the quasi-static balance of the robot. In order to fully use the whole range of possible motions, this paper proposes extending the task-function approach to handle the full dynamics of the robot multibody along with any constraint written as equality or inequality of the state and control variables. The definition of multiple objectives is made possible by ordering them inside a strict hierarchy. Several models of contact with the environment can be implemented in the framework. We propose a reduced formulation of the multiple rigid planar contact that keeps a low computation cost. The efficiency of this approach is illustrated by presenting several multicontact dynamic motions in simulation and on the real HRP-2 robot

    Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints

    Get PDF
    In this paper, we propose a solution to compute full-dynamic motions for a humanoid robot, accounting for various kinds of constraints such as dynamic balance or joint limits. As a first step, we propose a unification of task-based control schemes, in inverse kinematics or inverse dynamics. Based on this unification, we generalize the cascade of quadratic programs that were developed for inverse kinematics only. Then, we apply the solution to generate, in simulation, wholebody motions for a humanoid robot in unilateral contact with the ground, while ensuring the dynamic balance on a non horizontal surface

    Génération de mouvements corps-complet sous contraintes pour des systÚmes dynamiques anthropomorphes

    No full text
    This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements.Cette thĂšse Ă©tudie la question de la gĂ©nĂ©ration de mouvements corps-complet pour des systĂšmes anthropomorphes. Elle considĂšre le problĂšme de la modĂ©lisation et de la commande en abordant la question difficile de la gĂ©nĂ©ration de mouvements ressemblant Ă  ceux de l'homme. En premier lieu, un modĂšle dynamique du robot humanoĂŻde HRP-2 est Ă©laborĂ© Ă  partir de l'algorithme rĂ©cursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schĂ©ma de commande dynamique est ensuite dĂ©veloppĂ©, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coĂ»ts et calculant les couples de commande en satisfaisant des contraintes d'Ă©galitĂ© et d'inĂ©galitĂ©. La cascade de problĂšmes quadratiques est dĂ©finie par une pile de tĂąches associĂ©e Ă  un ordre de prioritĂ©. Nous proposons ensuite une formulation unifiĂ©e des contraintes de contacts planaires et nous montrons que la mĂ©thode proposĂ©e permet de prendre en compte plusieurs contacts non coplanaires et gĂ©nĂ©ralise la contrainte usuelle du ZMP dans le cas oĂč seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de gĂ©nĂ©ration de mouvement issus de la robotique aux outils de capture du mouvement humain en dĂ©veloppant une mĂ©thode originale de gĂ©nĂ©ration de mouvement visant Ă  imiter le mouvement humain. Cette mĂ©thode est basĂ©e sur le recalage des donnĂ©es capturĂ©es et l'Ă©dition du mouvement en utilisant le solveur hiĂ©rarchique prĂ©cĂ©demment introduit et la dĂ©finition de tĂąches et de contraintes dynamiques. Cette mĂ©thode originale permet d'ajuster un mouvement humain capturĂ© pour le reproduire fidĂšlement sur un humanoĂŻde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent Ă  ceux de l'homme, nous dĂ©veloppons un modĂšle anthropomorphe ayant un nombre de degrĂ©s de libertĂ© supĂ©rieur Ă  celui du robot humanoĂŻde HRP2. Le solveur gĂ©nĂ©rique est utilisĂ© pour simuler le mouvement sur ce nouveau modĂšle. Une sĂ©rie de tĂąches est dĂ©finie pour dĂ©crire un scĂ©nario jo uĂ© par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modĂšle dynamique permet d'accroitre naturellement le rĂ©alisme du mouvement

    Dynamic Motion Capture and Edition using a Stack of Tasks

    No full text
    Submitted to 11th IEEE-RAS International Conference on Humanoid Robots; The research group works in LAAS-CNRS ToulouseInternational audienceThis paper presents a complete methodology to quickly reshape a dynamic motion demonstrated by a human and to adapt the dynamics of the human to the dynamics of the robot. The method uses an inverse dynamics control scheme with a quadratic programming optimization solver. The motion data recorded using a motion capture system is introduced into the control scheme as a reference posture task to be followed by the joints trajectory respecting the dynamic limitations as well as the contact constraints. The motion is further modified using arbitrary tasks to let the robot imitate the original motion more closely or to make voluntary changes for aesthetic reasons. The results show the method applied to the humanoid robot HRP-2 imitating a human "pop dance"

    Dancing Humanoid Robots: Systematic use of OSID to Compute Dynamically Consistent Movements Following a Motion Capture Pattern

    No full text
    International audienceIn October 2012, the humanoid robot HRP-2 was presented during a live demonstration performing fine-balanced dance movements with a human performer in front of more than 1000 people. This success was possible by the systematic use of operational-space inverse dynamics to compute dynamically consistent movements following a motion capture pattern demonstrated by a human choreographer. The first goal of this article is to give an overview of the efficient inverse-dynamics method used to generate the dance motion. Behind the methodological description, the second and main goal of the article is to present the robot dance as the first successful real-size implementation of inverse dynamics for humanoid-robot movement generation. This gives a proof of concept of the interest of inverse dynamics, which is more expressive than inverse kinematics and more computationally tractable than model-predictive control. It is, in our opinion, the topical method of choice for humanoid whole-body movement generation. The real-size demonstration also gave us some insight of nowadays methodological limits and the consequent future needed developments

    Capture, Recognition and Imitation of Anthropomorphic Motion

    No full text
    VidéoInternational audienceThis work presents an overview of our current research works in generation, recognition and editing of anthropomorphic motion using a unified framework: the stack of tasks. It is based on the task function formalism classically used for motion generation. A task function maps the joint space of a robot to a dedicated space which is usually linked to the sensors of the robot: the task space. The task spaces are suitable to perform motion analysis and task recognition because the tasks are described in those spaces. The generation is originally based on inverse kinematics but can be generalized to produce full-dynamic motions. The tasks are defined by a tasks space, a reference behavior and a task Jacobian. The reference behaviors are originated from human trajectories. Specific tasks are then integrated to retarget and to edit the reference motion in order to respect the dynamic constraints, the limits of the robot and the general aspect

    Whole-Body Torques for Generating Complex Movements in Humans and Humanoids

    Get PDF
    This paper considers the problem of identifying the control torques associated with the generation of complex movements in an anthropomorphic system. We present a generic motion generation scheme for humanoid robots. Then we use the torques estimated from human motion capture and force sensor measurements, to compare with similar movements simulated on a humanoid robot. The general features of movement during a sequence of reaching tasks are analyzed. In particular we compare kinematics-based and dynamics-based movements. Finally, the variation of torques at the different joints are compared and discussed

    Multi-contact Motion Planning and Control

    No full text
    International audienceThe essence of humanoid robots is their ability to reproduce human skills in locomotion and manipulation. Early efforts in humanoid research were dedicated to bipedal walking, first on flat terrains and recently on uneven ones, while the manipulation capabilities inherit from the literature in bimanual and dexterous-hand manipulation. In practice, the two problems interact largely. Locomotion in cluttered spaces benefits from extra contacts between any part of the robot and the environment, such as when grippers grasp a handrail during stair climbing, while legs can conversely enhance manipulation capabilities, such as when arching the whole body to augment contact pressure at an end effector. The two problems share the same background: they are governed by non-smooth dynamics (friction and impacts at contacts) under viability constraints including dynamic stability. Consequently, they are now solved jointly. This chapter highlights the state-of-the-art techniques used for this purpose in multi-contact planning and control
    corecore